
17th Australasian Fluid Mechanics Conference 

Auckland, New Zealand 

5-9 December 2010 

 
A Three-Dimensional Transient Growth and DNS Analysis of ‘High Tail’ and ‘Flat 

Tail’ Aircraft Configurations 

 
Chris L. Ellis, Kris Ryan and Gregory J. Sheard

 

Fluids Laboratory for Aerospace and Industrial Research, Department of Mechanical and Aerospace Engineering, 
Monash University, Clayton, Victoria, 3800, Australia 

 

Abstract 

This paper investigates the transient growth response of 

perturbations added to counter-rotating four vortex systems. The 

paper also compares the transient response of the wakes behind 

‘high tail’ configuration aircraft, such as the C-17 Globemaster, 

with that of the wakes behind more conventional ‘flat tail’ 

aircraft, such as the Boeing 747-400. Transient growth is 

computed using the method of Barkley et al. [Int. J. Numer. 

Meth. Fluids 57, 1435–1458], and this is the first application of 

this method to multiple vortex pair systems.  

The study conducted found that when the perturbations found 

from the transient growth analysis that lead to optimal energy 

growth are used to perturb a four vortex system then the 

perturbations grow rapidly and have a significant effect on the 

base vortex system. It also found that when the vortex pair that 

simulates the vortices shed off an aircraft tail is vertically 

displaced, the growthrate of the perturbations is approximately 

double that of the ‘flat tail’ configuration in a three-dimensional 

direct numerical simulation. 

Introduction  

Wake vortices are a byproduct of the generation of lift by the 

wings of an aircraft. They are produced when the high pressure 

air from underneath the wing flows around the outer edges of the 

wing tip. This causes a coherent vortex structure that extends 

almost horizontally behind the aircraft to form and can linger in 

the air for some time far downstream of the aircraft path [12]. 

The circulations generated by these vortices can pose a real 

danger to following aircraft, as evidenced by the crash of an 

American Airlines Airbus A300 in New York, on 12 November 

2001, due to a structural failure of its rudder when abrupt 

corrections were applied after passing through another aircraft’s 

wake (NTSB Report Number AAR-04-04). As aircraft are 

becoming larger and larger, the wake vortices they produce are 

also increasing in size and strength. This limits the maximum 

passenger throughput of airports, and therefore motivates 

research into mechanisms for reducing the impact of these 

vortices in aviation. Counter-rotating vortex pairs, as a model for 

aircraft wakes, have been investigated since the 1970s [1]. More 

recently, it has been shown that the strength of the vortex pair 

produced from the tail of an aircraft can be anywhere up to 50% 

of the strength of the vortex pair produced by the wings [13]. The 

presence of the vortex pair extending from the tail can have a 

significant effect on the two dimensional kinematic properties of 

the stronger vortex pair shed by the wings. While this has been 

investigated by Fabre et al. [6], and Crouch [4], the focus has 

been on potential ways to force three-dimensional instabilities to 

form in the main wing vortex pair. To date, no research has 

investigated how a change in the aircraft tail configuration affects 

the overall vortex system. 

For aircraft such as the C-17 Globemaster heavy lift aircraft, the 

tail can offset vertically from the plane of the wings by up to 20% 

of the span of the wings. This research is particularly pertinent to 

military airfields where the majority of the aircraft are either very 

large high tail heavy lift aircraft such as the C-17, or much 

smaller fighter type aircraft. An understanding of the stability of 

these flows is of interest as it can provide insight into possible 

mechanisms for the disruption of these types of flows to reduce 

the hazard for trailing aircraft. 

Crouch [4] employed a vortex filament model to study the 

stability and transient growth of a system comprising two co-

rotating vortex pairs. This type of four-vortex system is 

representative of the vortex system generated by an aircraft from 

the wingtips and any discontinuity along the wing surface, such 

as flaps. The vortex filament model is limited as it does not go 

down to the scale within the vortex core and is limited to sinuous 

instability modes. Crouch used a Floquet type analysis to look at 

the stability of the vortex system. A limitation of this analysis is 

that it assumes a time-periodic flow. However, vortex wakes are 

subject to diffusion from the moment they form and thus strictly 

lack the time periodicity required for a Floquet-type linear 

stability analysis. 

Given the gradual erosion of the vortex system by diffusion, and 

the interest in mechanisms for the rapid destruction of these 

vortex systems, a transient growth analysis is well suited to the 

study of this type of flow. Transient disturbances in these types 

of flow can be very important as they have the potential to 

severely alter the baseflow and cause destruction of the wake 

vorticies. Barkley et al. [2] proposed a method of transient 

growth analysis that is based on an eigenvalue solution of a time-

integrated disturbance field, which is readily implemented using 

a straightforward modification of a standard Floquet analysis 

solver. This technique has been further applied to the study of 

steady and pulsatile stenotic flows [5] and flow over a backward-

facing step [3]. This method has not yet been applied to vortex 

systems, particularly the four-vortex system investigated here.  

Methodology 

The vortex system comprises two pairs of counter-rotating 

vortices with circulation magnitude Г1 and Г2. Figure 1 shows a 

schematic representation of the vortex system under investigation 

and the key variables defining the problem. The system is 

evolved using the incompressible Navier-Stokes equations. 
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where u is the velocity vector field, t is time, p is the kinematic 

pressure and   is the kinematic viscosity. 

A Gaussian vortex profile was used, which was chosen to be 

consistent with previous work in the area [6, 8, 19]. Moreover, 

LeDizès & Verga [12] demonstrated that arbitrary vortex profiles 

attract to a Gaussian profile, making it a generic representation of 

a vortex. The other advantage with this type of vortex profile is  



 

Figure 1: Schematic diagram of the four-vortex system considered in this 

study. Symbols are used to define vortex circulations and spacings are 

shown. 

that it allows for the analysis of all of the Kelvin mode 

instabilities, not just sinuous modes. The tangential velocity 

around a Gaussian vortex is given by 
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where   represents the tangential velocity, r is the radius from the 

centre of the vortex and r0 is the vortex core size. 

In this study, Re is defined based on the circulation magnitude of 

the larger vortex pair Γ1, and the kinematic viscosity, υ, as, 
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A Reynolds number, Re = 20,000, was employed in this study, 

consistent with the ranges used in previous studies on counter-

rotating vortices [16, 13, 9]. This value allowed for reasonable 

computational resources and computation time. It is assumed that 

the instabilities being investigated are consistent across the Re of 

a real aircraft and the simulations. This assumption is reasonable 

as the primary method of destruction of this type of vortex 

system is caused by perturbations with wavelengths that are far 

above the turbulence length scales damped out by the higher 

viscosity [11].  

The problem is simulated using an in-house code employing a 

spectral-element discretization in space and a third-order time-

integration scheme based on backward differentiation. This type 

of solver has been used extensively to study myriad wake and 

vortex flows [17, 18, 19]. The solver employs a nodal 

formulation, in which Lagrangian tensor-product polynomials are 

employed in each element. The degree of this polynomial can be 

changed for a given simulation to control spatial resolution. More 

information on this method can be found in Karniadakis et al. 

[10]. 

The method utilised to find the perturbation fields that lead to 

optimum transient growth of an integral norm of energy was 

described in Barkley et al. [2]. Global linear stability analysis 

predicts the asymptotic stability of a flow, which is goverened by 

only the leading eigenmode of the linear evolution operator. 

However, large amplitude transient growth is possible over short 

times due to the interaction between the non-normal eignemodes 

of the system, and it is this short-timescale amplification that is 

the focus of this study. The eigenvalue solver used in this study 

has been validated and employed in the past in linear stability 

analysis of other flows [17], and has produced results consistent 

with an independent formulation of the algorithm [4]. 

This method begins by defining an operator  (t) describing the 

evolution of a perturbation field, 
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Figure 2: Plot of `flat tail' transient growth amplification factor, G(τ), 

against wavenumber, β, for the indicated time intervals.  

The norm used by Barkley et al. [2] to quantify the size of a 

perturbation is the total kinetic energy of the perturbation field. 

By normalizing the energy growth of the perturbation with its 

initial energy and using the evolution operator such that, 
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(where  *(τ) is the adjoint evolution operator to  (τ) in the L2 

norm) it becomes possible to find the dominant eigenvalues of 

 *(τ)  (τ) which dictate the largest possible transient growth 

for a perturbation at given τ value. 

The action of the evolution operator,  (t), on the perturbation 

vector is equivalent to integrating the linearized Navier--Stokes 

equation forward in time. Given this, the effect of the adjoint to 

this operator,  *(t), on the perturbation vector is the equivalent 

of integrating the adjoint Navier-Stokes equation backwards in 

time over the time, τ. Due to the requirement to integrate 

backwards in time, interpolation is used to supply the base flow 

velocity field for the adjoint operation. Ultimately, this method 

uses the same principles as linear stability analysis, except the 

eigenmodes that are being computed are that of  *(τ)  (τ), 

rather than that of  (τ). 

Results 

It can be seen in Figure 2 that as τ increases, the general trend of 

the growth amplification factor against wavenumber remains the 

same, giving a log-linear increase in the growth amplification 

factor with increase in τ. Another point of note is that the peak 

wavenumber is independent of τ.  

From the perspective of flow control, this implies that a system 

need only perturb at a frequency corresponding to a specific axial 

wavenumber to effectively disrupt the baseflow. For a `flat tail' 

case, the wavenumber is approximately 5. It is important to note 

that the peak growth amplification factor for higher τ values is of 

sufficient magnitude as to cause significant changes to the 

baseflow, causing rapid destruction of the wake vortex system. 

This large growth however will violate the linear model of the 

disturbance and a full three-dimensional simulation is required to 

determine the actual energy amplifications resulting from these 

disturbances. These three-dimensional simulations are covered 

later in this paper. 



 

Figure 3: Plot of ‘high tail’ transient growth amplification factor, G(τ), 
against wavenumber, β, for the indicated time intervals. 

 

Figure 4: Plot of `flat tail' perturbation energy normalized by initial 

energy. The solid line represents the solution of the linearized Navier-

Stokes equation and the dashed line represents the energy in the Fourier 
modes of the three dimensional direct numerical simulation. The solution 

of the linearized Navier-Stokes equation was conducted at τ = 60 and at β 

= 5. 

It can be seen in Figure 3 that the 'high tail' transient growth 

amplification factor shows similar qualitative trends to the ‘flat 

tail’ case. It does however have important quantitative 

differences, such as the peak wavenumber being closer to 3.5. 

This indicates that an active control method to induce destruction 

of an aircraft wake would need to be tailored to the aircraft tail 

configuration. It is interesting to note that the peak G(τ) of the 

`high tail' is less than that of the `flat tail' for a τ of less than 55, 

while peak G(τ) is higher in the `high tail' case for a τ of greater 

than 55. This indicates that for an initial perturbation added to the 

system, the `high tail' case will have greater energy growth, 

potentially leading to a shorter-timescale for the destruction of 

the vortices. 

 

 

Figure 5: Plot of `high tail' perturbation energy normalized by initial 

energy. The solid line represents the solution of the linearized Navier-

Stokes equation and the dashed line represents the energy in the fourier 
modes of the non-linear simulation. The solution of the linearized Navier-

Stokes equation was conducted at τ = 60 and at β = 3.5.  

Figures 4 and 5 show the energy in the perturbations, normalized 

by the initial energy, compared to the energy in the non-zero 

Fourier modes of the three dimensional direct numerical 

simulation for the `flat tail' and `high tail' cases respectively. The 

perturbation fields become highly non-linear after less than 25% 

of the time it takes for the tail vortex pair to orbit the wing vortex 

pair, with the `high tail' case having more energy, leading to 

faster instability growth and destruction of the vortex system. It is 

interesting to note that the optimal perturbation fields found from 

the linearized Navier-Stokes equations continue to grow even 

though the baseflow becomes changed. This means that the 

perturbation initialised by the optimal perturbation fields found 

with the linearized Navier-Stokes equations continues to grow 

even with the large changes to the baseflow until the flow 

structures become small enough for the fluid viscosity to damp 

out. It is possible for the perturbations to change the baseflow in 

such a way that would not be conducive to growth and the energy 

in the perturbations would slowly decay due to the fluid 

viscosity.   

It is interesting to note that the energy in the ‘high tail’ 

configuration is approximately double that of the ‘flat tail’ 

configuration. This implies that an optimal disturbance in the 

wake from a ‘high tail’ aircraft will cause the destruction of the 

vortex structure in a shorter period of time, leading to faster 

viscous dissipation. 

Figure 6 shows the ‘flat tail’ configuration at times t = 0 and 7. 

As can be seen, even after such a short timeframe, the flow 

becomes highly turbulent when a small initial optimal 

perturbation is added. The high level of small turbulence 

structure after 7 time units allows the viscosity of the fluid to 

assist in the destruction of the flow.  

Figure 7 shows the ‘high tail’ configuration at times t = 0 and 7. 

As can be seen, even after such a short timeframe, the flow 

becomes highly turbulent when a small initial optimal 

perturbation is added.  

It is also important to note that the bulge in the larger vortex pair 

compared to the ‘flat tail’ case indicates that the transient growth 

is having a larger effect on the ‘high tail’ case. This suggests that 

the ‘high tail’ case is more susceptible to transient growth and 

therefore will be destroyed in a shorter timeframe. 



 

Figure 6: Flooded contour Plot of isosurfaces of axial vorticity of the ‘flat 

tail’ three-dimensional DNS. The left plot is at t = 0, the right plot is at t = 

7. Contour levels were arbitrarily chosen to best display the flow 
structures. Red represents positive (anti-clockwise) vorticity and blue 

represents negative (clockwise) vorticity. 

  

Figure 7: Flooded contour Plot of isosurfaces of axial vorticity of the 

‘high tail’ three-dimensional DNS. The left plot is at t = 0, the right plot 
is at t = 7. Contour levels were arbitrarily chosen to best display the flow 

structures. Red represents positive (anti-clockwise) vorticity and blue 

represents negative (clockwise) vorticity. 

 

Conclusions 

This paper investigated the non-linear response of four vortex 

systems to the perturbations that lead to optimal energy growth 

predicted using a transient growth analysis.  

While the transient growth analysis is conducted using the 

linearised Navier-Stokes equations, the perturbations that lead to 

optimal energy growth continue to gain energy even though the 

baseflow becomes massively perturbed. This is an interesting 

discovery as the changes in the baseflow could have produced an 

environment that is not conducive to the growth of the 

perturbation, damping it out and having little further effect on the 

baseflow.  

The data shows that the energy in the perturbations for a ‘high 

tail’ wake grows at a slightly faster rate than the ‘flat tail’ 

configuration. This implies that the transient growth of the 

perturbation will cause the vortex structure to break down into 

smaller turbulent structures in a shorter time, allowing viscous 

dissipation to reduce the hazard to trailing aircraft. 
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