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Abstract 

In this study, a benchmark natural convection problem is 

studied under a Gay—Lussac type approximation incorporating 

centrifugal effects in the context of a new vorticity-stream-

function approach. This approximation differs from the classic 

Boussinesq approximation in that density variations are 

considered in the advection term as well as the gravity term in 

the momentum equations. Such a treatment invokes Froude 

number as a non-Boussinesq parameter deviating results from 

the classic Boussinesq approximation. Numerical simulations 

of the natural convection in square cavity are performed up to 

𝑅𝑎 = 106 and 𝜀 = 0.3  at 𝑃𝑟 = 0.71 via proposed formulation

and results are compared against the conventional Boussinesq 

approximation in terms of the average and local Nusselt number 

and entropy generation. Comparing results indicate that, up to 

𝑅𝑎 = 105, mentioned approaches are showing almost identical

performance, but as the Rayleigh number exceeds 105, formed 

thermal boundary layer under Gay—Lussac type 

approximation is slightly thicker compared to the Boussinesq 

approximation accompanied by a stronger velocity gradient. 
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Introduction 

Traditionally, the Boussinesq approximation [1] is adopted for 

the numerical simulation of the natural convection problems.  

Ignoring density variations except in buoyancy term and 

treating the flow field as incompressible makes the classic 

Boussinesq approximation popular among researchers [2-4]. 

Simple implementation and great accuracy of performance for 

problems associated with small temperature difference are main 

advantages of the Boussinesq approximation. 

The main assumption of the Boussinesq approximation (density 

variation confined to the buoyancy term) is established based 

on small density variations.  In other words, applying the 

Boussinesq approximation to cases with large density 

variations produces inaccurate results [5]. Foundry processes 

and astrophysical MHD simulations are two samples of the 

natural convection phenomena that are accompanied by a large 

temperature differences [6]. In these situations, it is better to 

avoid the Boussinesq approximation and use other numerical 

approaches beyond the Boussinesq approximation for 

numerical simulation of the natural convection phenomena. 

Available remedies to avoid the limitations of the Boussinesq 

approximation for numerical simulation of natural convection 

problems may be divided into two major categories: 

compressible and incompressible. One remedy in the 

incompressible category is the Gay—Lussac approach, which 

is developed based on considering density variations in any 

term in which density appears, i.e. continuity and the 

advection/convection terms of the momentum/energy 

equations, respectively. Such a treatment introduces the Gay—

Lussac parameter as a product of thermal coefficient expansion 

and temperature difference (𝐺𝑎 = 𝛽∆𝜃). In this state, a pre-

factor of (1 − 𝐺𝑎Θ) acts as a modifier on the aforementioned 

terms in the governing equations. It can be shown that the 

Boussinesq approximation is recovered as 𝐺𝑎 → 0 [7]. 

Recently, a Gay—Lussac type approach in the context of 

primitive variables was proposed by Lopez et al. [8] for the 

treatment of rapidly rotating flows, in which instead of 

considering density variations in all terms of the governing 

equations containing density, buoyancy effects were extended 

just to the centrifugal part of the advection term to capture 

centrifugal effects in those rapidly rotating flows. This idea is 

continued in this study and a new formulation of the governing 

equations in the context of the secondary vorticity stream-

function variables are presented. The new formulation is 

applied on the square cavity benchmark problem and obtained 

results are compared against the conventional Boussinesq 

approximation in terms of the average and local Nusselt number 

and entropy generation. 

Governing equations 

According to Lopez et al. [8], more accurate results may be 

obtained by extending density variations to the centrifugal part 

of the advection term for rapidly rotating flows. Let us start with 

steady-state form of the momentum equation  

𝜌

𝜌0

(𝒖 ∙ 𝛻)𝒖 = −
1

𝜌0
𝛻𝑝 + 𝜈𝛻2𝒖 +

𝜌

𝜌0
𝑔 𝒆𝑔.  (1) 

Substituting the density state relation 𝜌/𝜌0 = 1 − 𝛽𝜃 and the

modified pressure (𝑝∗) defined as 𝑝∗ = 𝑝 + 𝜌0𝜙, where 𝜙 is the

gravitational potential whose gradient opposes the gravitational 

acceleration vector into equation (1) yields

(𝒖 ∙ ∇)𝒖 = −
1

𝜌0
∇𝑝∗ + 𝜈∇2𝒖 − 𝛽𝜃𝑔𝒆𝑔 + 𝛽𝜃(𝒖 ∙ ∇)𝒖.      (2) 

Using dimensionless quantities 

𝑿 =
𝒙

𝐿
, 𝑼 =

𝒖𝐿

𝛼
, 𝑃 =

𝑝∗𝐿2

𝜌𝛼2 , 𝛩 =
𝜃

∆𝜃
=

𝑇−𝑇0

𝑇ℎ−𝑇𝑐
,  (3) 

one can derive the dimensionless form of the momentum 

equation for natural convection problems, 

(𝑼 ∙ 𝛻)𝑼 = −𝛻𝑃 + 𝑃𝑟 𝛻2𝑼 − 𝑅𝑎𝑃𝑟𝛩𝒆𝑔 + 𝐺𝑎𝛩(𝑼 ∙ 𝛻)𝑼.  (4)

Equation (4) introduces the Prandtl number 𝑃𝑟 = 𝜈 𝛼⁄  

characterising the ratio of the molecular to thermal dissipation, 

and the Rayleigh number 𝑅𝑎 = 𝑔𝛽∆𝜃𝐿ref
3 𝜈𝛼⁄  characterising

the ratio of buoyancy to viscous and thermal dissipation. The 

Gay—Lussac parameter may be expressed as 𝐺𝑎 = 𝛽∆𝜃 =
𝐹𝑟𝑅𝑎𝑃𝑟 in which 𝐹𝑟 is the Froude number characterising ratio 

of inertia to gravitational effects (𝐹𝑟 = 𝛼2/𝑔𝐿3). The Gay—

Lussac parameter also may be expressed based on the relative 

temperature difference (𝜀) as 𝐺𝑎 = 𝛽∆𝜃 = (𝑇ℎ − 𝑇𝑐) 𝑇𝑜⁄ = 2𝜀.

Comparing two expressions of the Gay—Lussac parameter 

gives the following relation for the Froude number which 

matches its magnitude based on the given 𝜀 at each 𝑅𝑎 and 𝑃𝑟 

𝐹𝑟 = 2𝜀/𝑅𝑎𝑃𝑟.  (5) 

Using the introduced expression of the Gay—Lussac parameter 

(𝐺𝑎 = 𝐹𝑟𝑅𝑎𝑃𝑟), the momentum equation may be expressed as 



(𝑼 ∙ 𝛻)𝑼 = −𝛻𝑃 + 𝑃𝑟 𝛻2𝑼 − 𝑅𝑎𝑃𝑟𝛩( 𝒆𝒈 − 𝐹𝑟(𝑼 ∙ 𝛻)𝑼). (6) 

As can be seen, equation. (6) is consistent with the momentum 

equation under the Boussinesq approximation, except for the 

additional inertial buoyancy term on the right hand side. When 

expressed in this form, it is apparent that the action of this 

additional term is to modify the effective direction (and 

strength) of the gravity locally throughout the flow which is 

ignored in the conventional Boussinesq approximation. Indeed, 

regions which are experiencing higher spatial accelerations 

(described by (𝑼 ∙ ∇)𝑼) will experience deviations from the 

Boussinesq buoyancy approximation. The strength of these 

deviations relative to gravity is described by 𝐹𝑟, with 𝐹𝑟 → 0 

(and 𝐺𝑎 → 0) recovering the classical Boussinesq 

approximation. Thus under this Gay—Lussac type 

approximation, governing equations in steady state form are 

expressed as [9-10] 

{

∇ ∙ 𝑼 = 0,

(𝑼 ∙ ∇)𝑼 = −∇𝑃 + 𝑃𝑟 ∇2𝑼 − 𝑅𝑎𝑃𝑟Θ( 𝒆𝒈 − 𝐹𝑟(𝑼 ∙ ∇)𝑼),

(𝑼 ∙ ∇)𝛩 = ∇2𝛩.

 

(7) 

Using the secondary variables, i.e. vorticity ( 𝜔 = 𝜕𝑉 𝜕𝑋⁄ −
𝜕𝑈 𝜕𝑌⁄ ) and stream-function (𝑈 = 𝜕𝜓 𝜕𝑌⁄ ; 𝑉 = − 𝜕𝜓 𝜕𝑋⁄ ), 

the scalar formulation of the governing equations under the 

Gay—Lussac approximation are expressed as (subscripts 

denote differentiation) 

{

∇2𝜓 = −𝜔

(1 − 𝑅𝑎𝑃𝑟𝐹𝑟Θ)(𝜓𝑦𝜔𝑥 − 𝜓𝑥𝜔𝑦) = 𝑃𝑟 ∇2𝜔 + 𝑅𝑎𝑃𝑟Θ𝑥 ,

𝜓𝑦Θ𝑥 − 𝜓𝑥Θ𝑦 = ∇2Θ ∙

 (8) 

Problem description and parameters definition 

Natural convection in a square cavity driven by hot and cold 

side-walls is a popular benchmark problem.  Here it is studied 

under the two mentioned approximations. A schematic of the 

square cavity configuration is shown in figure 1, presenting the 

thermal boundary conditions comprising two horizontal 

adiabatic boundaries, and hot and cold left and right boundaries, 

respectively. The applied boundary conditions for vorticity and 

stream-function are also shown in this figure. 

  

Figure 1. A schematic view of the problem and applied boundary 

conditions. 

The local and average Nusselt number along the two constant-

temperature walls are calculated as 

𝑁𝑢loc(𝑌) = −
𝜕Θ

𝜕𝑛
|

wall
,                                                           (9) 

𝑁𝑢avg = ∫ 𝑁𝑢loc d𝑌
1

0
.                                                          (10) 

The dimensionless local entropy generation due to heat transfer 

(𝑆𝜃) and fluid friction (𝑆𝜓) are calculated as 

𝑆𝛩 = [(
𝜕𝛩

𝜕𝑋
)

2
+ (

𝜕𝛩

𝜕𝑌
)

2
],                                                         (11) 

𝑆𝜓 = 𝜒 [2 {(
𝜕𝑈

𝜕𝑋
)

2
+ (

𝜕𝑉

𝜕𝑌
)

2
} + (

𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)

2
].                        (12) 

In equation (11) 𝜒 is the irreversibility distribution ratio, which 

is assumed to be fixed and equal to 10−4 in this study.  The total 

entropy generation due to heat transfer and fluid friction is 

calculated by the summation of the local entropy generation 

over the physical domain via 

𝑆𝛩,𝑡𝑜𝑡 = ∫ 𝑆𝛩 d𝑣
𝑉

,                                                                (13) 

𝑆𝜓,𝑡𝑜𝑡 = ∫ 𝑆𝜓 d𝑣
𝑉

.                                                             (14) 

The relative dominance of entropy generation due to heat 

transfer and fluid friction is given by average Bejan number 

(𝐵𝑒avg), a dimensionless parameter defined as 

𝐵𝑒𝑎𝑣𝑔 =
𝑆𝛩,𝑡𝑜𝑡

𝑆𝛩,𝑡𝑜𝑡+𝑆𝜓,𝑡𝑜𝑡
,                                                              (15) 

where 𝐵𝑒avg > 0.5 implies dominance of heat transfer 

irreversibility and 𝐵𝑒avg < 0.5 implies dominance of fluid 

friction irreversibility. 

Results and discussion 

Results obtained with the two approaches are presented in this 

section.  Simulations are performed up to 𝑅𝑎 = 106 and 𝜀 =
0.3 at a fixed Prandtl number 𝑃𝑟 = 0.71. Based on equation (5) 

and according to the considered range of 𝜀, the corresponding 

Froude number range is 0 ≤ 𝐹𝑟 ≤ 0.6/𝑅𝑎𝑃𝑟.  The governing 

equations are solved using a control-volume finite element 

solver [11-18] with a second-order temporal accuracy. A mesh 

resolution study is performed and it is found that a mesh size of 

𝑛𝑥 × 𝑛𝑦 = 1212 makes the problem independent of mesh size 

for both approximations in considered range of the 𝑅𝑎 and 𝜀.  

For a better understanding of the added term effects in the 

momentum equation under the Gay—Lussac type 

approximation, the absolute magnitude of Θ(𝜓𝑦𝜔𝑥 − 𝜓𝑥𝜔𝑦) is 

portrayed in figure 2 for a Boussinesq case at 𝑅𝑎 = 106. As 

seen, the magnitude of the non-Boussinesq acceleration is 

stronger at four corners of the cavity and weaker effects are 

sensible at central region of the physical domain. The stronger 

regions of non-Boussinesq effects are formed due to rapid fluid 

rotation near the four corners of the enclosure. 

  

Figure 2. Magnitude of the acceleration vector field of the non-

Boussinesq acceleration term i.e. |Θ(𝜓𝑦𝜔𝑥 − 𝜓𝑥𝜔𝑦)| at 𝑅𝑎 = 106. 



 

Figure 3. Absolute difference between temperature fields obtained from 

the Boussinesq and Gay—Lussac type approximations at 𝑅𝑎 = 106.  

Solid lines are Boussinesq (𝐹𝑟 = 0) isotherms and dashed lines are 

isotherms of the Gay—Lussac type approximation at 𝐹𝑟 = 0.6/𝑅𝑎𝑃𝑟. 

The effects of the non-Boussinesq acceleration is sensed in 

figure 3 by depicting the absolute difference of temperature 

fields at 𝑅𝑎 = 106 under the Boussinesq approximation (𝐹𝑟 =
0) and the Gay—Lussac type approximation with 𝐹𝑟 =
0.6/𝑅𝑎𝑃𝑟. The maximum difference in this plot is 

approximately 0.015 that regarding the maximum value of Θ 

(Θ𝑚𝑎𝑥 = 0.5), it is showing a 3% mismatch between the two 

approaches (|∆Θ|𝑚𝑎𝑥 Θ𝑚𝑎𝑥⁄ ≅ 3%). It is clear that the 

mismatch between the two approaches increases with 

increasing non-Boussinesq parameter (Froude number). 

Local Nusselt Number 

Local Nusselt number distribution along the two vertical walls 

are presented at 𝑅𝑎 = 106 for 𝐹𝑟 = 0, 0.3/𝑅𝑎𝑃𝑟 and 0.6/
𝑅𝑎𝑃𝑟 under the two approximations in figure 4. For the left 

heating wall, by increasing the height and forming thicker 

thermal boundary, the total value of local Nusselt number is 

decreasing while this pattern is reverse for the right cooling part 

as the flow motion due to a clockwise rotation is downward 

along this wall. As seen, the difference of the local Nusselt 

number along the isotherm walls under two approximations is 

negligible in this problem, which is in agreement with presented 

absolute temperature difference field in Fig. 3 in which most of 

difference is occurring in the regions away from isotherm walls. 

Average Nusselt Number 

Computed average Nusselt number across 10 ≤ 𝑅𝑎 ≤ 106 is 

presented at 𝐹𝑟 = 0 and 0.6/𝑅𝑎𝑃𝑟 in figure 5 under the two 

approximations. Because of the similarity between the trends, 

results of 𝐹𝑟 = 0.3/𝑅𝑎𝑃𝑟 are not shown in this plot. As 

expected, the average Nusselt number is increased by 

increasing the Rayleigh number. As expected, average Nusselt 

number values under two approximations are so close together 

as the local Nusselt number distributions were not showing 

significant difference. A quantitative investigation shows a 

small difference of 0.006% at the highest Rayleigh number 

between 𝐹𝑟 = 0 and 𝐹𝑟 = 0.6/𝑅𝑎𝑃𝑟 with a lower value for the 

Gay—Lussac type approximation compared to the Boussinesq 

approximation. 

 

Figure 4. Local Nusselt number distribution along the vertical walls for 

different Froude numbers as stated at (a) 𝑅𝑎 = 106 (b) 𝑅𝑎 = 105. 

 

Figure 5. Average Nusselt number for 𝐹𝑟 = 0 and 0.6/𝑅𝑎𝑃𝑟 across 

10 ≤ 𝑅𝑎 ≤ 106. 

Average Bejan Number 

The rate of entropy generation are shown in the context of 

average Bejan number under the two approximations at 𝐹𝑟 = 0 

and 0.6/𝑅𝑎𝑃𝑟 in figure 6.  Results indicate that up to 𝑅𝑎 ≈
103, conduction is dominant part of heat transfer mechanism 

(𝐵𝑒avg ≅ 1). The average Bejan number intersects with 

𝐵𝑒avg = 0.5 at 𝑅𝑎 ≅ 2 × 104. This is where the share of both 

conduction and convection becomes equal in heat transfer 

mechanism, and thereafter the heat transfer mechanism 

becomes convection dominated with increasing Rayleigh 

number (𝐵𝑒avg < 0.5). The difference of 𝐵𝑒avg between the 

two approaches becomes slightly different in the convection 

dominated regime for 𝑅𝑎 ≥ 105 with a lower value for the 

Gay—Lussac type approximation indicating slightly stronger 

velocity gradients under this approximation. The maximum 

difference between the two approaches at 𝑅𝑎 = 106 is 0.2%. 

 

Figure 6. Average Bejan number for 𝐹𝑟 = 0 and 0.6/𝑅𝑎𝑃𝑟 across 10 ≤
𝑅𝑎 ≤ 106. 



Conclusion 

In this paper, a new secondary variable formula is applied to the 

square cavity benchmark problem up to 𝑅𝑎 = 106 and 𝜀 = 0.3 

at 𝑃𝑟 = 0.71.  The new formula is a vorticity-stream-function 

expression of a Gay—Lussac type approximation which is 

derived by considering density variations in the advection term 

of the momentum equations in addition to the gravity term, 

offering an improved description of convection in rapidly 

rotating regions of the flow.  A Froude number is introduced 

characterising deviation from the classic Boussinesq 

approximation as 𝐹𝑟 = 2𝜀/𝑅𝑎𝑃𝑟.  Obtained numerical data 

indicates that the Boussinesq approximation gives results 

consistent with the improved approximation up to 𝑅𝑎 = 105 

but as Rayleigh number exceeds 105, a slight mismatch 

between the two approaches is noticeable.  At 𝑅𝑎 = 106, a 

0.006 % and 0.2 % difference is observed for the average 

Nusselt number and average Bejan number, under the classic 

Boussinesq approximation (𝐹𝑟 = 0) and the Gay—Lussac type 

approximation with 𝐹𝑟 = 0.6/𝑅𝑎𝑃𝑟, respectively.  In the 

context of the Gay-Lussac parameter, the present results 

demonstrate that the traditional Boussinesq approximation is 

accurate up to at least 𝛽∆𝜃 = 𝑅𝑎 𝑃𝑟 𝐹𝑟 = 𝑂(10−2), with 

deviations emerging beyond this magnitude.  Finally, it is 

expected that non-Boussinesq effects will be significant at 

higher Rayleigh numbers, small-scale systems, or for fluids 

having large thermal expansion coefficients. 
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