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A B S T R A C T   

The well-known Boussinesq (also known as Oberbeck—Boussinesq) approximation is still the most common 
approach for the numerical simulation of natural convection problems. However, the accurate performance of 
this approximation is mainly restricted by small temperature differences. This encourages researchers and en
gineers to use other approaches beyond the range of validity of the Boussinesq approximation, especially when 
buoyancy-driven flows are generated by large temperature differences. This paper assembles and classifies the 
various approaches for numerical simulation of laminar natural convection, including Boussinesq and non- 
Boussinesq approximations for Newtonian fluids. These classifications reside under two overarching classes 
capturing compressible and incompressible approaches, respectively. This review elaborates on the different 
approaches and formulations adopted within each category.   

1. Introduction 

Natural convection (NC) describes the flow and associated heat 
transport generated by temperature or species molar concentration 
differences. The addition of an external momentum source (a fan, for 
example) creates the sister class of convection known as mixed con
vection. This paper focuses solely on pure natural convection problems 
in the absence of external momentum forcing and the different possible 
scenarios for their numerical simulation. 

The name most synonymous with modelling natural convection is 
Joseph Valentin Boussinesq, who in 1897 proposed the striking simpli
fication of the natural convection problem that now bears his name: the 
Boussinesq model [1] neglects density differences except in the gravity 
term of the momentum equation. Crucially, this permitted NC flows to 
be treated within an incompressible framework, greatly increasing their 
mathematical tractability. Almost fifty years after Claude Navier (in 
1850) and George Stokes (in 1845) contributed to the development of 
the Navier—Stokes (NS) equations governing fluid motion, Boussinesq 
[1] established his famous approximation for NC problems. Later, Josef 
[2] recognised that Anton Oberbeck in 1879 [3] had earlier applied the 
same concept in his description of heat conduction in liquids accounting 
for currents driven by thermal gradients. The model is now commonly 
referred to as the Oberbeck—Boussinesq (OB) approximation in recog
nition of their respective contributions. The OB approximation is 

established based on the following assumptions:  

• Small temperature differences  
• Negligible viscous heat dissipation  
• Constant thermophysical properties  
• Linear density state equation  
• Small hydrostatic pressure variations 

Under the OB approximation, density variations are confined just to 
the gravity term of the momentum equation, and their effects are 
ignored in other terms. Simple implementation, rapid convergence rate, 
and outstanding accuracy over small temperature differences are ben
efits of the OB approximation. Under the OB approximation, density and 
temperature are connected via a linear density state equation using the 
definition of volumetric thermal expansion. The expansion coefficient 
value is typically taken at some reference temperature of the working 
fluid. Another less appreciated fundamental assumption of the OB 
approximation, is small hydrostatic pressure variations over the height 
of the physical domain compared to the thermodynamic pressure vari
ations inside the system. This ratio is characterized by the dimensionless 
barometric number (Ba = gH/RT) [4]. 

One of the pioneering studies to determine the accurate range of the 
OB approximation performance was performed by Gray & Giorgini [5]. 
Considering all fluid properties as linear functions of two state variables 
(temperature and pressure) at a reference temperature of T0 = 15 ◦ C and 
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a reference pressure of p0 = 1 atm, they extracted the valid temperature 
difference range of the OB approximation application in air and water as 
respectively less than 28.6 ◦ C and 1.25 ◦ C at a limited length scale of 
Lref ≤ 8.3 × 104 cm and Lref ≤ 2.4 × 105 cm. To neglect the pressure work 
term in the energy equation, they obtained the ranges of ∆T/Lref ≤ 1020 
cm/ ◦ C and ∆T/Lref ≤ 9.9 × 104 cm/ ◦ C for air and water, respectively. 
Additionally, to safely ignore the viscous dissipation relative to the 
thermal diffusion term of the energy equation, they obtained length 
scales Lref ≤ 4.1 × 105 cm and Lref ≤ 3.5 × 106 cm for air and water, 
respectively. 

There are many scientific and industrial applications in which tem
perature differences and length scales are beyond the regime of validity 
of the OB approximation. Foundry processes, thermal insulation systems 
in nuclear reactors, solar collectors, and astrophysical MHD simulations 
are some examples in which temperature differences are of the order of 
several hundred kelvin, or in which the length scale exceeds hundred 
kilometres. In these situations, the OB approximation yields inaccurate 
results. Available numerical algorithms that attempt to improve upon 
the OB approximation are less abundant in the literature. This paper 
seeks to classify numerical algorithms within two main categories: 
compressible and incompressible. These two categories and their sub
categories are presented in the context of a flowchart in Fig. 1. In section 
2, compressible-flow approaches are introduced, and in section 3, 
incompressible approaches are reviewed. A brief conclusion is drawn in 
section 4. An exhaustive collation of the literature review pertaining to 
each of the identified sub-categories is beyond the scope of this review. 

2. Compressible-flow based approximations 

The first category of remedies to the limitations of the OB approxi
mation is built upon the concept of compressibility, which leads to the 
introduction of the Mach number. As shown in Fig. 1, compressible 

treatment of the NS equations is possible in two fashions: Fully 
compressible and weakly compressible approaches. We start with the 
introduction of the fully compressible approach and numerical problems 
associated with that. Then, the weakly compressible approach is intro
duced and discussed. 

2.1. Fully compressible approximation 

Theoretically, the perfect simulation of NC is possible via the fully 
compressible form of the NS equations, since minimal approximations 
are introduced in this approach. The governing equations for a 
compressible Newtonian fluid, respectively derived from the principles 
of conservation of mass, momentum and energy, and closed by a density 
state equation are, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ*

∂t*
+∇∙(ρ*u) = 0,

∂(ρ*u)
∂t*

+∇∙(ρ*u ⊗ u) = − ∇p + ρ*geg + μ∇∙τ*,

∂
(
ρ*cp

*T
)

∂t*
+∇∙

(
ρ*cp

*uT
)
= k∇2T +

Dp
Dt*

+ μφ

p = f (ρ*, T)

,

(1) 

It should be noted the energy equation does not have a unique form. 
Different forms of the energy equation including specific heat at con
stant volume (cv) or shear stress (τ) may be found in ref. [6]. Using 
dimensionless parameters based on diffusion velocity scale (u0 = α/L), 

t =
t*α
L2 ,X =

x
L
,U =

uL
α ,P =

pL2

ρ0α2,Θ =
T
T0
, ρ =

ρ*

ρ0
, cp =

cp
*

cp0
, ε =

∆T
2T0

, (2)  

the dimensionless form of the fully compressible NS equations may be 

Nomenclature 

Ba barometric number 
cp specific heat at constant pressure 
eg the unit vector in the gravity direction 
Ec Eckert number 
Fr Froude number 
Ga Gay-Lussac parameter (β∆θ) 
H height 
k thermal conductivity 
L reference length 
p pressure 
P dimensionless pressure 
Pth thermodynamic pressure 

Pr Prandtl number 
R ideal gas constant 
Ra Rayleigh number 
T temperature 
u velocity vector 
U dimensionless velocity vector 
α thermal diffusivity 
β isobaric expansion coefficient 
ε relative temperature difference 
θ physical temperature 
Θ dimensionless temperature 
μ dynamic viscosity 
ν kinematic viscosity 
ρ density  

Fig. 1. Classification of different approximations for numerical simulation of the natural convection problems.  
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expressed as follows, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t

+∇∙(ρU) = 0,

∂(ρU)

∂t
+∇∙(ρU ⊗ U) = − ∇P +

RaPr
2ε ρeg + Pr∇∙τ,

∂(ρΘ)

∂t
+∇∙(ρUΘ) = ∇2Θ + 2εEc

DP
Dt

+ 2εEcPrΦ

P = f (ρ,Θ)

(3) 

The choice for the reference velocity in NC is not unique. Another 
common choice for the reference velocity is the gravity velocity scale 
(u0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅
gβ∆TL

√
), leading to different pre-factors. The presented dimen

sionless equation of state is also valid for an ideal diatomic gas (R/R0 =

1, cp = 1). Using Stokes’ hypothesis for the bulk viscosity (λ = − 2/3μ), 
the dimensionless form of the stress tensor (τ) and dissipation term (Φ) 
for a 2D flow field in Cartesian coordinates are, 

τ = ∇U +(∇U)
T
− (2/3)(∇∙U)I, (4)  

Φ = 2

[(
∂U
∂X

)2

+

(
∂V
∂Y

)2
]

+

(
∂U
∂Y

+
∂V
∂X

)2

−
2
3

[(
∂U
∂X

+
∂V
∂Y

)2
]

(5) 

Compressible flow is characterized by the Mach number. In 
compressible buoyancy-driven flows, the square of the Mach number for 
an ideal gas may be recast as, 

Ma2 =
u0

2

γ(∂p/∂ρ)T
=

(α/L)2

γRT0
=

(α/L)2

(γ − 1)cp0T0
=

2ε
(γ − 1)

(α/L)2

cp0∆T
=

2ε
(γ − 1)

Ec.

(6) 

Regarding the maximum value of the relative temperature difference 
of unity (εmax = 1), the maximum Mach number in NC is bounded by the 

square root of the Eckert number (Mamax =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Ec(γ − 1)− 1
√

). Another 
advantage of Eq. (6) is replacement of the 2εEc in the energy equation by 
(γ − 1)Ma2. Thus, the energy equation may be rewritten as, 

∂(ρΘ)

∂t
+∇∙(ρUΘ) = ∇2Θ+(γ − 1)Ma2

(
DP
Dt

+PrΦ
)

(7) 

When expressed in this form, it can be seen that the energy equation 
under the incompressible assumption is recovered as the Mach number 
approaches zero (Ma → 0,ρ → 1). 

Fully compressible NS solvers are developed in two fashions: 
pressure-based and density-based. In brief, density-based algorithms are 
developed so that density is updated through the continuity equation, 
and pressure is obtained from the equation of state. The Roe scheme [7] 
is a popular method in this category. On the other hand, in pressure- 
based algorithms, the continuity equation becomes a constraint (Pois
son equation) for pressure, and density is updated via the equation of 
state. While pressure-based algorithms can be applied across the entire 
spectrum of the Mach number, density-based solvers face serious 
convergence problems within the near-zero Mach number regime [8], as 
pressure wave speed approaches infinity as Ma → 0. This is important 
because Mach number is typically very small for most NC problems. For 
instance, numerical simulation of NC in the square cavity benchmark 
problem (with two horizontal adiabatic sides and two vertical hot and 
cold isothermal walls) at a high relative temperature difference of ε =
0.6 and Ra = 105 indicates the maximum Mach number is equal to 3.68 
× 10− 4 [9]. Thus, applying density-based solvers on NC problems re
quires numerical treatments such as preconditioning and using a dual 
time-step strategy [10,11]. Although pressure-based algorithms would 
appear to be more suitable for NC problems, but for enclosed domains 
(having no inflow-outflow), conserving initial mass should be consid
ered for a physical answer [12]. 

Many researchers have performed numerical simulations of NC 
problems under the fully compressible approach. NC in square cavity 

benchmark problem up to Ra = 106 and ε = 0.6 is numerically simulated 
in refs. [12–16]. Reported data corresponding to ε = 0.01 in refs. [12, 
15, 16] confirm that the fully compressible approach gives identical 
results to the incompressible OB approximation. El-Gendi & Aly [17] 
analysed unsteady compressible NC in square and sinusoidal cavity up to 
a huge temperature difference of 2000 K. Darbandi and Hosseinizadeh 
[18] studied NC in a deep vertical-cavity, concluding that the maximum 
Nusselt number initially increases and then decreases as the length to 
height ratio increases with a little different pattern for different Rayleigh 
numbers. NC in a horizontal concentric annulus cavity at Ra = 4.7 × 104 

and ε = 0.33 under the fully compressible assumption is performed by 
Weiss and Smith [11]. A similar study within the OB regime (∆T =
26.3 ◦ C) was performed by Volkov et al. [19]. The aspect ratio of the 
outer to inner cylinder diameters in both studies was fixed at 2.6 to 
enable comparison with the experimental data reported by Kuhen & 
Goldstein [20]. Yamamoto et al. [21] simulated compressible NC of air 
around a circular cylinder in free space as an external flow and validated 
their results against the experimental data of Kuhen & Goldstein [20]. 
Then, they extended their calculations for NC of horizontal pipes con
taining hot liquid with three different solid to air conductivity ratio. Fu 
et al. [22] simulated a compressible NC problem in a vertical open 
channel for industrial applications. In this respect, they presented two 
equations, which separately correlates the average Nusselt number to 
the Rayleigh number and the length of the channel for a broad range of 
temperature differences. A similar study of compressible NC in an in
clined open channel for a limited range of the Rayleigh number has been 
performed by Talukdar et al. [23]. Following Fu et al. [22], they pre
sented a relation for the average Nusselt number as a function of Ray
leigh number and inclination angle suitable for engineering 
applications. 

2.2. Weakly compressible approximation 

The second subcategory under the umbrella of compressible flow 
assumption, i.e. weakly compressible approach, is developed to resolve 
numerical problems associated with small Mach number NC problems. 
This approach is also sometimes called as the low Mach number scheme 
(LMS). Another advantage of the LMS approximation is that it permits 
larger time steps for explicit methods. Under the LMS approximation 
developed by Paulucci [24], acoustic sound waves are filtered from the 
fully compressible approach for the low Mach number regime, and the 
total pressure is split into a global/uniform thermodynamic pressure 
(pth) and a local hydrodynamic pressure (ph) as ptot = pth + ph. This 
simplification is performed based on asymptotic analysis that states pth/ 
p0 ≅ O(1) and ph/p0 ≅ O(Ma2) [24]. Under the LMS approximation, 
local hydrodynamic pressure (obtained from a Poisson equation) acts in 
the momentum equation to establish a balance amongst advection, 
buoyancy, and diffusion terms, while thermodynamic pressure is used to 
update density during the solution procedure. Under the LMS approxi
mation, the governing equations for an ideal gas are expressed as, 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ*

∂t*
+∇∙(ρ*u) = 0,

∂(ρ*u)
∂t*

+∇∙(ρ*u ⊗ u) = − ∇ph + ρ*eg +∇∙τ*,

ρ*cp
*
(

∂T
∂t*

+ u∙∇T
)

= κ∇2T +
dpth

dt

pth = ρ*RT.

,

(8) 

Using the group of dimensionless parameters introduced earlier in 
Eq. (6) accompanied by a dimensionless thermodynamic pressure (Pth =

pth/p0), the dimensionless form of the governing equations for an ideal 
gas are expressed as follows [25]. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
∂t

+∇∙(ρU) = 0,

∂(ρU)

∂t
+∇∙(ρU ⊗ U) = − ∇P +

RaPr
2ε ρeg + Pr∇∙τ,

ρ
(

∂Θ
∂t

+ U∙∇Θ
)

= ∇2Θ + Γ
dPth

dt

Pth = ρΘ.

,

(9) 

In Eq. (9), Γ is a measure of the resilience of the fluid (Γ = (γ − 1)/γ), 
where γ is the heat capacity ratio (γ = cp/cv). The buoyancy term in both 
of Eqs. (3) and (9) is expressed by a gL3/α2 pre-factor that is replaced by 
a Froude number, characterising the ratio of inertia to gravity, 

gL3

α2 ρ =
gL

(α/L)2 ρ =
gL
u0

2 ρ =
1

Fr
ρ. (10) 

To express the Froude number as a Product of Ra, Pr, and ε, we may 
use the Rayleigh number definition. Within the compressible/weakly- 
compressible approaches, the Rayleigh number is expressed slightly 
differently compared to its incompressible definition 

Racomp. = Pr
gρ0

2(Th − Tc)L3

Toμ0
2 =

gβ∆TL3

να = Raincomp. (11) 

Comparing incompressible and compressible Rayleigh number defi
nitions give the following relation for the Froude number, 

2ε = (Th − Tc)/To
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

Compressible

= β∆T = RaPrFr
⏟̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅ ⏟

Incompressible

→Fr = 2ε
/

RaPr. (12) 

Eq. (9) has one more unknown (Pth) concerning the number of 
equations. For open systems, thermodynamic pressure may be simply 
approximated by the atmospheric pressure. However, for the enclosed 
domains, an extra equation is required to close the system of equations. 
Combining the energy equation with the equation of state and continuity 
from Eq. (9) yields, 

∇∙U =
1

pth

[

∇2Θ −
1
γ

dPth

dt

]

(13) 

Using the Gauss divergence theorem, it can be shown that integration 
of ∇ ∙ U over a closed domain is zero, thus 

dPth

dt
=

γ
V

∫

S

∂Θ
∂xj

njdS. (14) 

In Eq. (14), S and V refer to the surface and volume of the physical 
domain, respectively. The integrand of Eq. (14) is the residual of the 
energy equation that asymptotically goes to zero for a steady-state so
lution (dPth/dt → 0). Computing thermodynamic pressure variations 
from Eq. (14) does not guarantee strict mass conservation [9]. Knowing 
initial mass inside the system (m0), Le Quéré et al. [26] suggested 
applying the concept of mass conservation for an enclosed domain to 
update thermodynamic pressure: 

m0 =
P0V
RT0

=
PthV
RT

→Pth =

(
P0V
T0

)

⏟̅̅̅̅⏞⏞̅̅̅̅⏟
cte

/∫

V
dV

/

T. (15) 

A comprehensive study of the NC under the LMS approximation in 
the square cavity benchmark problem is performed by Paolucci and 
Chenoweth [25,27]. They found that by increasing temperature differ
ences, critical Ra for stationary and oscillatory instabilities are 
decreased. Their stability analysis results under LMS approximation for 
a differential relative temperature difference indicates that flow be
comes unsteady at Ra = 1.93 × 108 [27]. A similar study of the NC 
problem under the LMS approximation in the square cavity is also per
formed by Wang et al. [28]. They extracted power-law scaling of the 
average Nusselt number for the different range of Ra at different ε and 

determined critical Rayleigh number at ε = 0.2, 0.4, and 0.6. A bench
mark solution for the square cavity problem is provided by Le Quéré et 
al. [29]. Le Quéré et al. [26] applied LMS approximation for different 
relative temperature differences in a deep cavity with an aspect ratio of 8 
to study the transition to unsteadiness. A similar study of a deep vertical- 
cavity emphasizing stability analysis is also performed by Suslov and 
Paolucci [30,31]. Paillere et al. [9] compared results of the LMS 
approach against the fully compressible approach for both small (ε =
0.01) and large (ε = 0.6) temperature differences up to Ra = 105. They 
showed the LMS model could simulate NC with high fidelity and 
negligible differences compared to the hyperbolic fully compressible NS 
equations. Elmo & Cioni [32] used LMS approximation for a pebble bed 
of a nuclear reactor. Kumar & Natarajan [33] investigated the role of 
discrete conservation in numerical simulations of thermos-buoyant 
flows in enclosures and devised two different pressure-based numeri
cal algorithms under LMS approximation that violate either the equation 
of state or a conservation law at the discrete level, leading to two 
different classes of algorithms. Tyliszczak [34] applied the projection 
method with a second-order temporal accuracy of Adams-Bashforth/ 
Adams-Moulton methods to the LMS approach. 

Finally, in the compressible framework, the idea of splitting the total 
pressure into a spatially uniform and a local pressure is also presented 
under the homobaricity approach [35]. This approach was originally 
developed for gaseous flow with zero viscosity; similar to the LMS 
approach, equation of state and energy equations are treated by the 
spatially uniform thermodynamic pressure while the hydrodynamic 
local pressure acts solely in the momentum equation. Cherkasov et al. 
[36] applied this approach for a 1D boundary layer problem along the 
vertical plate. 

3. Incompressible approximations 

Approaches within the incompressible-flow framework will now be 
explored. As shown in Fig. 1, the incompressible category is divided into 
the OB type approximations and algorithms beyond the OB approxi
mations. The OB-type approximations will be covered first, and then we 
introduce different non-OB subcategories will be discussed. 

3.1. OB type approximations 

The OB-type approximations may be divided into two groups; the 
first being the original OB approximation and the second being the 
thermodynamic Boussinesq approximation. 

3.1.1. OB approximation 
When the OB approach conditions [5] are met, density variations are 

assumed to be negligible except via the gravity term. Neglecting viscous 
heat dissipation and pressure work terms, governing equations in the 
dimensional form under the OB approximation are expressed as follows, 
⎧
⎨

⎩

ρ/ρ0(∇∙u) = 0
ρ
/

ρ0(∂u/∂t* + u∙∇u) = − (1/ρ0)∇p + ν∇2u + (ρ/ρ0)geg

ρ
/

ρ0(∂T/∂t* + u∙∇T) = α∇2T.
(16) 

To relate temperature variations to density, a linear density state 
equation (ρ/ρ0 = 1 − βθ) is derived from the volumetric thermal 
expansion coefficient definition. Under the OB approximation, all ρ/ρ0 
pre-factors are considered equal to unity except in gravity term, which is 
replaced by the linear density state equation. The result is, 
⎧
⎨

⎩

∇∙u = 0
∂u

/
∂t* + u∙∇u = − (1/ρ0)∇p + ν∇2u + (1 − βθ)geg

∂T
/

∂t* + u∙∇T = α∇2T.
(17) 

In the next step, a modified pressure is introduced as p* = p + ρ0ϕ, 
where ϕ is the gravitational potential whose gradient opposes the 
gravitational acceleration vector, i.e. ∇ϕ = − geg. The modified pressure 
absorbs geg term in the momentum equation and just the βθgeg remains 
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as the buoyancy term. Using the same dimensionless parameters in Eq. 
(2) except with a different dimensionless temperature defined as Θ = (T 
− T0)/ΔT, the dimensionless form of the governing equations become, 
⎧
⎨

⎩

∇∙U = 0,
∂U

/
∂t + U∙∇U = − ∇P + Pr∇2U − RaPrΘeg,

∂Θ
/

∂t + U∙∇Θ = ∇2Θ.

(18) 

There are a vast number of works that have adopted the OB 
approximation. As the focus of this review is on the approaches beyond 
the original OB approximation, interested readers are directed to rele
vant review papers with a focus on specific geometry including the 
annulus [37,38], triangular [39,40], parallelogram [41], non-square 
[42], and rectangular-shaped [43] cavities or particular topics within 
NC such as localized heating [44] or internal heat sources [45]. 

3.1.2. Thermodynamic Boussinesq approximation 
Under the OB approximation, dissipated heat due to viscous friction 

and work of pressure stress are removed from the energy equation as 
their effects are assumed to be negligible. Decisions as to whether heat 
dissipation or pressure work terms may be neglected are typically made 
based on comparing order-of-magnitude arguments, but this causes a 
thermodynamical paradox. The momentum equations compel the 
dissipation of kinetic energy due to fluid friction (diffusion terms). 
However, under the OB approximation, heat produced by this process is 
not captured by the energy equation. Separately, the absence of the 
pressure work in the energy equation lacks a logical relation between the 
internal energy and work performed upon the fluid. Using Gibbs and 
entropy balance equations, it can be shown that when these contribu
tions are omitted from the energy equation, the described thermody
namic system recognizes heat conduction (and not viscous friction) as 
the only source of irreversibility. This prompted to development of an 
elaborated version of the OB approximation under different names 
including ‘deep convection’ [46], ‘thermodynamic’ [47], and ‘extended’ 
[5] Boussinesq approximations. The thermodynamic paradox is dis
cussed in detail in refs. [48, 49], where it is concluded that removing 
pressure work and viscus dissipated heat remains a paradox for enclosed 
domains. Pons and Le Quéré [50] presented a dimensionless form of the 
governing equations under the thermodynamic Boussinesq model in 
which the effect of both dissipated heat due to viscous friction and work 
of pressure stress were considered in the energy equation. When both 
terms mentioned above are considered in the energy equation, the 
governing equations for an ideal gas are, 
⎧
⎨

⎩

∇∙U = 0,
∂U

/
∂t + U∙∇U = − ∇P + Pr∇2U − RaPrΘeg,

∂Θ
/

∂t + U∙∇Θ = ∇2Θ + EcPrΦ − ArΓBaU∙eg,

(19)  

where Φ is the dissipation term (Eq. (5)) of a divergence-free flow field 
and the barometric number is defined by the ratio of potential energy 
variations to thermodynamic pressure variations (Ba = gH/R∆T). Ar is 
the aspect ratio of the geometry (Ar = L/H). Since the net product of EcPr 
is minimal for gaseous flow in the Boussinesq regime, Pons and Le Quéré 
[51] ignored dissipated heat due to viscous friction. They found that 
when the magnitude of the barometric number becomes more extensive 
than 0.01/Γ, its effect in the energy equation is no longer negligible in 
the square cavity benchmark problem. A variant of the thermodynamic 
Boussinesq approximation whereby the pressure work is neglected and 
only the viscous dissipation term is retained, is broadly used for nu
merical simulation of NC in porous media. An excellent review of free/ 
mixed convection in saturated porous media considering viscous dissi
pation is performed by Nield [52]. 

3.2. Non-OB approximations 

Approaches residing in the second category of the incompressible 
approximations attempt to increase the OB approximation accuracy so 

that the formulation is applicable for a larger spectrum of temperature 
differences. With reference to Fig. 1, three subcategories are identified in 
this class: the Gay-Lussac approximation, non-linear density state 
equation, and approaches based on variable thermophysical properties. 

3.2.1. Gay-Lussac approximation 
Under the Gay-Lussac approximation, density variations are not 

confined only to gravity term in contrast to the OB approximation. In 
this approach, the ρ/ρ0 pre-factors are expressed in terms of Gay-Lussac 
parameter (Ga = βΔθ) as follows, 

ρ/ρ0 = 1 − βθ = 1 − βΔθΘ = 1 − GaΘ. (20) 

Considering all density variations of Eq. (16) and replacing them 
with Eq. (20) yields the following dimensionless form of the governing 
equations, which is known as the Gay-Lussac approximation, 
⎧
⎨

⎩

(1 − GaΘ)(∇∙U) = 0
∂U

/
∂t + (1 − GaΘ)U∙∇U = − ∇P + Pr∇2U − RaPrΘeg

∂Θ
/

∂t + (1 − GaΘ)U∙∇Θ = ∇2Θ.

(21) 

Eq. (21) is made dimensionless with the same dimensionless pa
rameters applied for the OB approximation. Having a physical density 
requires ρ/ρ0 > 0 and consequently 1 − GaΘ > 0 that gives Ga < 1/Θ. 
When the dimensionless temperature is defined as Θ = (T − T0)/ΔT, 
then the minimum and maximum dimensionless temperatures alter 
between ±0.5 that gives Ga < 2 constraint for the Gay-Lussac parameter 
to have a physical density value. This approximation has thus far found 
only limited application in the literature. Pesso & Piva [53] applied the 
Gay-Lussac approximation for the square cavity benchmark problem for 
a broad range of Rayleigh (10 ≤ Ra ≤ 108) and Prandtl number (0.0071 
≤ Pr  ≤ 7.1). Their calculations indicate a reverse relation between Ga 
and the average Nusselt number. They also presented an analytical 
relation predicting the average Nusselt number as a function of Ra,  Pr , 
and Ga. Lopez et al. [54] presented a Gay-Lussac type approach for the 
treatment of rapidly rotating flows, in which instead of considering 
density variations in any term of the governing equations including 
density, buoyancy effects were extended just to the centrifugal part of 
the advection term to capture centrifugal effects in rapidly rotating 
flows. Mayeli & Sheard [55,56] continued this approach for NC in the 
annulus cavity with large temperature differences up to ε = 0.2. They 
compared obtained results against the LMS and OB approximations, 
concluding that extending density variations to the advection term 
slightly improves the Gay-Lussac type approximation flow-related data. 

3.2.2. Non-linear density state equation 
The full density state equation is ρ/ρ0 = 1 +

∑
i=1
n (− βθ)i, that is 

derived from the volumetric thermal expansion coefficient definition. 
The OB approximation is established based on a linear density state 
equation (n = 1), which works very well for the small temperature dif
ferences. However, as the temperature differences become large, higher 
terms of the density state relation may no longer be negligible. Another 
justification for applying a non-linear density state relation comes from 
the unconventional behaviour of some fluids such as water at temper
atures close to or equal to the temperature of maximum density (Tmax). 
In this situation, the linear density state relation may not be valid, even 
for small temperature differences. For instance, the density-temperature 
relationship of cold water in the vicinity of 4 ◦C does not obey a linear 
function. The non-linear density state equation of water (ρ/ρmax = 1 −
βθq where β = 9.29 × 10− 6(◦C)− q and q = 1.894) proposed by Gebhart 
and Mollendorf [57] is a popular equation in this category. Defining a 
dimensionless temperature named inversion parameter as Θm = (Tmax −

Tc)/(Th − Tc) which relates the temperature of the maximum density to 
the hot and cold reference temperatures accompanied by a modified 
Rayleigh number defined as Ra = gβ∆TqL3/να, the dimensionless mo
mentum equation is expressed as follows in this category, 

∂U
/

∂t+U∙∇U = − ∇P+Pr∇2U − RaPr(Θ − Θm)
qeg. (22) 
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For 0 < Θm < 1, Tmax lies between the hot and cold reference tem
peratures. Thus, studies in this category focus on this regime and the 
corresponding flow patterns due to different inversion parameters. One 
of the pioneer studies in this category was performed by Nansteel et al. 
[58] in the small range of the Rayleigh number in a rectangular cavity 
with three different height to length aspect ratios. They found that the 
inversion parameter near 0.5 (Θm = 0.5) results in a counter-rotating 
pair of vortices arranged horizontally in the enclosure. Similar 
behavior of dual rotating vortices in this problem is also reported by 
Braga & Viskanta [59]. Osorio et al. [60] studied this problem in an 
inclined square cavity. Another pioneering study in this category for the 
annulus cavity using a 4th-order density state equation is performed by 
Vasseur et al. [61]. They noticed a secondary vortex pair at the top of the 
inner cylinder for a limited range of inversion parameters. Raghavarao 
& Sanyasiraju [62] repeated this problem with a second-order density 
equation of state. They noticed a uni-cellular flow pattern at Θm = 0 and 
1, and a bi- cellular flow pattern at Θm = 0.5. Ho & Lin [63] studied the 
NC of water close to its maximum density in eccentric annulus using 
Gebhart and Mollendorf equation of state [57]. Studying the NC of water 
around the horizontal cylinder in free space using a 4th-order density 
state equation is performed by Wang et al. [64]. In this category, the 
quadratic density state equation is also used for numerical simulation of 
the oscillatory NC in the square cavity [65]. 

3.2.3. Variable thermophysical properties 
In the OB regime limit, the thermophysical properties of the working 

fluid are considered constant, which is a valid assumption for small 
temperature differences. However, when the temperature differences 
become large enough, the constant properties assumption is no longer 
valid, especially for working fluids sensitive to the temperature differ
ences. Since most of the compressible/weakly compressible simulations 
are devoted to large temperature differences, the idea of applying var
iable thermophysical properties is applied by default to the formulation 
in those works [15–17,22–32]. This approach is also pursued in an 
incompressible category beyond the OB approximation. One of the 
pioneer studies in this category is performed by Zhong et al. [66]. Their 
numerical results of NC via variable thermophysical properties approach 
in the square cavity for air as working fluid confirms that up to ε = 0.05, 
the results of OB is valid. Also, at ε ≅ 0.1, OB still correctly predicts 
overall heat transfer, but it over predicts the maximum vertical velocity 
by approximately 20%. Zhong et al. [66] also presented a relation for 
relative temperature difference as a function of the Rayleigh number 
determining the OB approximation’s valid performance. Leal et al. [67] 
continued this approach and concluded that the properties variation 
effects are considerable even within the OB regime. Hernández & 
Zamora [68] applied this approach for vertical channels. Mahony et al. 
[69] studied the annulus cavity problem under variable thermophysical 
properties assumption. They found that the OB assumption over-predicts 
the tangential velocity and the temperature gradient near the hot inner 
cylinder while under-predicting both close to the cold outer cylinder. In 
this category, a similar study of the annulus cavity considering eccentric 
effects is also performed by Shahraki [70]. 

4. Conclusion 

This review provides a general framework of different numerical 
approaches beyond the Oberbeck—Boussinesq approximation for 
buoyancy-driven flows. Two main approaches, compressible and 
incompressible, are distinguished, with different strategies elucidated 
within each class. A brief review of pioneering studies in each category is 
also performed. This short communication paper does not cover the 
broader literature on non-Oberbeck—Boussinesq natural convection, 
but the presented framework, in theory, may categorize any publication 
in this field of study. The literature survey indicates that, however the 
current compressible approaches work with high accuracy for natural 
convection problems associated with large temperature differences, but 

it seems the main challenge of the future non-Oberbeck—Boussinesq 
approximations would be improving the accuracy of the computations 
while retaining the simplicity of an incompressible approach. 
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[44] H.F. Öztop, P. Estellé, W.M. Yan, K. Al-Salem, J. Orfi, O. Mahian, A brief review of 
natural convection in enclosures under localized heating with and without 
nanofluids, Int. Commun. Heat & Mass 60 (2015) 37–44. 

[45] S. Pandey, Y.G. Park, M.Y. Ha, An exhaustive review of studies on natural 
convection in enclosures with and without internal bodies of various shapes, Int. J. 
Heat Mass Transf. 138 (2019) 762–795. 

[46] E.A. Spiegel, G. Veronis, On the Boussinesq approximation for a compressible fluid, 
Astrophys. J. 131 (1960) 442. 

[47] J.A. Dutton, G.H. Fichtl, Approximate equations of motion for gases and liquid, 
J. Atmos. Sci. 26 (2) (1969) 241–254. 

[48] A. Barletta, Comments on a paradox of viscous dissipation and its relation to the 
Oberbeck–Boussinesq approach, Int. J. Heat Mass Transf. 51 (2008) 6312–6316. 

[49] A. Barletta, Local energy balance, specific heats and the Oberbeck-Boussinesq 
approximation, Int. J. Heat Mass Transf. 52 (2009) 5266–5270. 
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